BARRIER TYPES AND PERFORMANCE

crash barrier

Traffic barriers are categorized in two ways: by the function they serve, and by how much they deflect when a vehicle crashes into them.

Barrier functi

Roadside barriers are used to protect traffic from roadside obstacles or hazards, such as slopes steep enough to cause rollover crashes, fixed objects like bridge piers, and bodies of water. Roadside barriers can also be used with medians, to prevent vehicles from colliding with hazards within the median.

Median barriers are used to prevent vehicles from crossing over a median and striking an oncoming vehicle in a head-on crash. Unlike roadside barriers, they must be designed to be struck from either side.

Bridge barrier is designed to restrain vehicles from crashing off the side of a bridge and falling onto the roadway, river or railroad below. It is usually higher than roadside barrier, to prevent trucks, buses, pedestrians and cyclists from vaulting or rolling over the barrier and falling over the side of the structure. Bridge rails are usually multi-rail tubular steel barriers or reinforced concrete parapets and barriers.

Work zone barriers are used to protect traffic from hazards in work zones. Their distinguishing feature is they can be relocated as conditions change in the road works. Two common types are used: temporary concrete barrier and water-filled barrier. The latter is composed of steel-reinforced plastic boxes that are put in place where needed, linked together to form a longitudinal barrier, then ballasted with water. These have an advantage in that they can be assembled without heavy lifting equipment, but they cannot be used in freezing.

Semi-rigid barriers include box beam guide rail, heavy post blocked out corrugated guide rail and thrie-beam guide rail. Thrie-beam is similar to corrugated rail, but it has three ridges instead of two. They deflect 3 to 6 feet (0.91 to 1.83 m): more than rigid barriers, but less than flexible barriers. Impact energy is dissipated through deformation of the rail elements, posts, soil and vehicle bodywork, and friction between the rail and vehicle. Box beam systems also spread the impact force over a number of posts due to the stiffness